H=-16t^2+203

Simple and best practice solution for H=-16t^2+203 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+203 equation:



=-16H^2+203
We move all terms to the left:
-(-16H^2+203)=0
We get rid of parentheses
16H^2-203=0
a = 16; b = 0; c = -203;
Δ = b2-4ac
Δ = 02-4·16·(-203)
Δ = 12992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12992}=\sqrt{64*203}=\sqrt{64}*\sqrt{203}=8\sqrt{203}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{203}}{2*16}=\frac{0-8\sqrt{203}}{32} =-\frac{8\sqrt{203}}{32} =-\frac{\sqrt{203}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{203}}{2*16}=\frac{0+8\sqrt{203}}{32} =\frac{8\sqrt{203}}{32} =\frac{\sqrt{203}}{4} $

See similar equations:

| 1/5y+3=11 | | 3(2a+10=54 | | 4=6/5x | | 7x+61=8=5 | | 5x-12Y=108 | | 8q=18 | | 2880=24(w)×-7 | | |-5x+25|-14=-14 | | 1.8(t+1.3)=9.54 | | 5+c=6-7c | | Y=4x-9=2x+11 | | 3(x-2)-3=36 | | 3x-45+3x+15=180 | | x-78=-105 | | 5-3x=7x+9 | | 15f+10=3f+20+17+3*27 | | 36x^-36=0 | | (2-x)=19 | | 9/194=11/x | | 31=y-2 | | 39+a=65 | | X=7.57x | | 38+a=65 | | r/5=19 | | 5−6x=−514 | | 23-x=2 | | 1-9m=8-8m | | 18+y=26 | | (x+0.6)(x+1.4)=0 | | 4x—16=20 | | k²+5=21;k=4 | | 8a-2=30;a=4 |

Equations solver categories